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*+Ie consi:ei sysiem of i;en;icai panic;es :is;f,bu;,=d in ?WO c:us;en 
described by harmonic oscillator wavefunctions A set of non-spurious two-cluster states, 
whose centre-of-mass is at rest, is constructed. It is characterized by the cluster Yamanauchi 
symbols as well as by its overall permutational symmetry, angular momentum and total 
energy. Applications to nuclear cluster models, to the evaluation of nuclear spectroscopic 
factors, to the description of nuclei as quark-clusters, and to the study of interacting rare-gas 
clusten are painted out. 

One of the technical difficulties that has to be faced in the study of finite systems of 
identical particles involves the construction of a basis set in which the spurious 
centre-of-mass motion is excluded. One common procedure involves the construction 
of a basis set contaminated by spurious states, which have then to be eliminated. This 
is usually done by adding an appropriate interaction to the Hamiltonian which pushes 

[ 11. However, these states are still present, yielding large, inefficient basis sets. 
An explicit elimination of the centre-of-mass can be achieved by using a harmonic 

oscillator basis set in Jacobi coordinates. The use of this approach for the construction 
of non-spurious nuclear wavefunctions was studied extensively by Kramer and 
Moshinsky [2,3] and, in a different manner, by Smirnov er al [4,5] and by Vanagas 
[6]. A detailed exposition of these applications is presented by Wildermuth and 
Tang [7]. 

A new approach for constructing single-cluster harmonic oscillator (HO) wavefunc- 
tions with arbitrary permutational symmetry was recently proposed [8]. In this approach 
the HO wavefunction is separated into an internal wavefunction in terms of n - 1 Jacobi 
coordinates and a centre-of-mass wavefunction. The internal states are constructed 
recursively using a new type of HO coefficients of fractional parentage ( H o w P S ) .  
Keeping the centre-of-mass at rest we obtain a basis set consisting of non-spurious HO 

states. 
A more serious difficulty is encountered in the calculation of spectroscopic factors 

in nuclear reactions [4,5]. These involve non-spurious two-cluster HO wavefunctions. 
Several methods have been proposed to eliminate two-cluster spurious states, but each 
one of them is only applicable within a small class of special cases [l]. 

!n :he present !e!!er we in!roduce I generi! procedure to cncs!~~!  ~on-sp.~rious 
two-cluster states with arbitrary permutational symmetry. The two-cluster states are 
expressed in terms of two single-cluster internal wavefunctions coupled to a HO relative 
wavefunction. The centre-of-mass is assumed to be at rest (Os state). Consequently, 
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the overall angular momentum is the same as the internal angular momentum. In 
addition, the centre-of-mass wavefunction is totally symmetric with respect to permuta- 
tions of the particle coordinates and therefore does not affect the overall permutational 
symmetry. In view of the above, we will consider only the internal wavefunction. 

For a single cluster of n identical particles, the sequence of irreducible representa- 
tions (irreps) T t 2 ]  . . Tr.-I1.  Trnl of the permutation group-subgroup chain S[21c 
S[,lc.. .c S[.-,lc Scm1 completely determines the permutational symmetry of the 
wavefunction. This sequence of irreps is equivalent to a Yamanouchi symbol Y[,,]. 
Therefore, the internal wavefunction of an n-particle single cluster with a well defined 
permutational symmetry is [9]  

I y[n l@["l ;  P~2l . [LlPi3 t , [21  . . . P ( " t . W I )  (1) 

where [ n ]  = {l, 2 , .  . . , n ) .  The symbol 
numbers 

denotes the remaining good quantum 

@[nl = A [ , , ] E [ ~ I ~ [ ~ I  (2) 
where A[,,] is the overall internal angular momentum, qn1 is the total internal energy 
and a[.] is an additional label that takes care of any remaining degeneracy. 

The wavefunction (1)  is expressed in terms of the n - 1 Jacobi coordinates 

where i = 2 , 3 , .  . . , n. This set of coordinates was found to be convenient because each 
internal coordinate p{tl,Ij+,l depends on the first i single particle coordinates only. This 
property enables the formulation of a recursive procedure for constructing the states 
specified by (I) ,  as presented in [ 8 ] .  

We now consider two-cluster HO states. The particles are distributed in these two 
clusters in such a way that there are n ,  particles in one cluster and n2 particles in the 
other, where n ,  + n2 = n. The good quantum numbers of a two-cluster wavefunction 
are the Yamanouchi symbols of the two clusters, Y,.,, and Y,.,,,, the total permutational 
irrep symbol Trnl, angular momentum SI.] and internal energy E [ , ]  (cf [lo]). The 
symbol [ n , ]  stands for the particle indices in the first cluster, [n2 ] '  for the indices in 
the second, and [ n ]  = [ n , ]  U [n2] ' .  The two-cluster wavefunction is constructed in terms 
of a basis set consisting of states of the form 

I( y[",l@[",l ~ ~ " ~ ~ @ ~ " * l ~ ~ ~ ~ " l @ ~ " * l , . ~ " , l ~ ~ " l ~ ~ " l ~ ~  (4) 

l@["21,.[n,l) = I ~ ~ . , l , . ~ " , l ~ ~ " , l ~ " * l , ;  P[Wl,.[",I) ( 5 )  

The intercluster HO wavefunction 

is expressed in terms of the intercluster relative coordinate 

N[n21,.[n,l and L[,,21,,[n,l are the corresponding radial and angular quantum numbers. 
The total internal energy is 

&[.I' ~ ~ . , I + ~ ~ " * l ~ + ~ ~ . ~ l , . ~ ~ , l  (7) 
where 

E["lY.["J = ZN[">Y.[",I+ k n * m , I + ~  ( 8 )  
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is the internal energy associated with the intercluster relative motion. The angular 
momenta are coupled in the two-cluster states (4) in the following order: first we 
couple the angular momentaof the two clusters A L H , l t A [ n 2 1 = A [ n l  and then we couple 
the resultant angular momentum with the angular momentum of the intercluster relative 
motion. This yields the overall internal angular momentum, i.e. A[nl+L[fi2y,[n,l = %[.I. 

The states (4) do not have a well defined n-particle permutational symmetry. Our 
aim in the present letter is to show how to construct a set of states which, in addition 

cluster, the total energy and angular momentum) can be labelled in terms of their 
overall permutational symmetry. 

A method to construct multicluster wavefunctions with well defined permutational 
symmetry in an arbitrary single particle basis was recently developed [ 101. An appropri- 
ate set of class-operators of the symmetric group [ l l ]  is diagonalized within the 
subspace of multicluster states with a given choice of  single-cluster Yamanouchi 
symbols and a given total angular momentum. The common eigenstates of these 
class-operators belong to irreps of the symmetric group that are fully specified by the 
corresponding eigenvalues. The resulting states contain the spurious centre-of-mass 
motion in an uncontrolled and inseparable way. 

Avery similar procedure can be adopted to the present context. Since the functions 
given by (4) are non-spurinus, so will be any linear combination of such functions. 
Choosing any desirable values for Y[,,l, YCnar ,  S?,,, and E [ . ] ,  and noting that the 
corresponding operators commute with the class-operators of the symmetric group 
S,,,,, we diagonalize the latter and obtain linear combinations belonging to irreps 
denoted by Trnl 

to the good quan!um numbers mentioned above (i.e. the YjlmlnOnChi syr;.?bo! of e d !  

I(Y[",l ~ ~ . , l ~ ~ ~ ~ . l ~ ~ " l ~ ~ . l ~ , n l ~  

where qn1 labels any remaining degeneracies. 
The coefficients appearing on the right-hand side of (9) are written in a form 

reminiscent of the celebrated coefficients of fractional parentage of the atomic and 
molecular shell-models. They are the overlap integrals between the states defined in 
(4) and the permutational symmetry adapted states specified on the left-hand side of 
(9). They are in fact the common eigenvectors of the matrices representing the class- 
operators of Scn1 in the basis set specified in (4). 

In [lo] it was shown that the matrix elements of the single cycle class operators, 

and intercluster contributions. The former are trivial because the basis functions are 
eigenstates of the intracluster class-operators (cf (4)). The intercluster contribution 
was shown in the above reference to be expressible in terms of the matrix element of 
a single representative cycle. Thus, the term that has to be evaluated in order to obtain 
the matrix element of the class of transpositions involves the single transposition 
(In!!: {n2) ' )  between the last particle in the first cluster and the last particle in the 
second. For the three-cycles the only matrix elements that need to be considered are 
( { n J ,  ( n ,  - 0, {n2Y). (Inl  -11, {nJ. {n2}'), ({nl}, {n2- 1)'. {nJ') and ({nJ, I ~ z ) ' ,  {n2- 
1)'). The sum of the first two is a class-operator in the realization of S3 in terms of the 

___L:^L "-- ̂ ..lx..:"-.. 1- >-."--.:--.La :-*a.." ^P P """ 1.n..nA:t:a..n.4 i".^ :..*--A.."*"- w,,,.,,, a,= DYLLILLCLI,  L" "C,Z-L.L...LC L1.C " L c p  "L "["], b P I I  "., p=.,LL."1.*" A I , , "  I . I L 1 . 2 L I Y I L C I  
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indices {nJ, {nl  - 1) and {n2Y, and the sum of the last two is a similar class-operator 
in another realization of S3. The extension to higher class-operators is obvious. 

In order to evaluate these matrix elements we propose to transform the two-cluster 
wavefunctions (4) into three-cluster wavefunctions in which the particles appearing in 
the permutation of interest are placed in the third cluster. In the case of the transposition 
( { n , ) ,  {n2]’)  the third cluster consists of the two particles { n , }  and In2)’. 

The third cluster is formed recursively, one particle at a time. Assume that at a 
certain stage the first cluster consists of the particles [ n , ]  = {1,2,. . . , n , ) ,  the second 
consists of [ n2]’ = { 1,2, . . . , n2}’ and the third consists of [ k]” = { 1,2,. . . , k)”. Say that 
we are now interested in moving the last particle of the first cluster into the third 
cluster. The coordinates involving this particle originally are its Jacobi coordinate 
within the first cluster, p,flLt,[nl-ll (equation (3)), as well as the coordinate of the 
centre-of-mass of the second cluster relative to that of the first, pcn2r,Ln,l (equation (6 ) ) ,  
and the coordinate of the centre-of-mass of the third cluster relative to that of the first 
two 

1 r;+ r i + .  . . + r i  - r,+ r2+. . . + r n l t  r i t  r;+. . .+ rb, 
n , + n ,  P[kl”.LnJu[n~l’ - -( k 

x J G x  k t n ,  t n2‘ (10) 

After the transformations the particle originally referred to as { n , )  is renamed 
{ k +  1)” and it appears in an appropriate Jacobi coordinate within the third cluster as 
well as in the coordinate of that (augmented) cluster relative to the centre-of-mass of 
the (new) first and second clusters. In addition, we have to introduce a new relative 
coordinate between the (new) first cluster and the (unaffected) second one. 

This situation is illustrated in figure 1, where the particle being transferred from 
the first cluster to the third is labelled in terms of its old and new labels. The locations 
of the various centres-of-mass involved in specifying the relevant coordinates, in both 
the original and modified clusters, are marked and labelled in the figure. 

In,] U [“,I‘ 

Figure 1. Transformation of a particle from the first to the third cluster. The panicle 
transformed is {nJ which becomes (k+ 1)”. m e  centre-of-mass of the original clusters are 
at the locations labelled [n,], [nJ and [k]”. Those of the new clusters are at [n ,  -11 and 
[k+l]’. [ n , ] v [ n , l ’  and [n , - l ]u[n , l ’  label the centres-of-mass ofthe pain of clusters 
indicated. 
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The transformation is achieved by means of two consecutive Talmi-Moshinsky 
type rotations [ 12-14], along with appropriate angular momentum recoupling transfor- 
mations which we do not specify in detail. The first rotation is 

Note that the transformation of { n , ]  into { k  + 1)" involves the identification rln, t  = r(k+,J. 
from which it follows that p(n,,,[n,-,lu[nxy = p(k+ll-,In,-llu[n,l. The second transformation 
is 

- 

The following special cases are important. 
1. The generation of the third cluster starts with the empty cluster k = 0. In this 

casecosT=Oandsin ~=1,i .e.p[ll . . , [n,~,luln21.=p(,J. .I  ",-, lu[nxY, whichisobvioussince 
[1]"={1)". Thus, the second rotation (equation (13)) is superfluous. 

2. Moving the last particle from the first to the third cluster. Here cos 5 = 0 and 
sin 5 =  1, i.e. p(lt,ln2Y=pI,l,ln2Y. In this case the first rotation (equation (11)) is super- 
fluous. 

The wavefunction for the third cluster.with the additional ( k +  1)"th particle is now 
of the form 

I ~ [ k l . ~ I k ] ~ ( k + l J . ~ r k + 1 1 . . ~ [ k + 1 1 . . ) ~  (15) 

Using the fact that the HOCFPS, defined in [SI, form a real orthogonal matrix whose 
inverse is the transposed matrix, we express this state as a linear combination ofthe form 

x' ~ ~ [ k + ~ i . ~ [ k + ~ l . ~ ~ ~ [ k ~ ~ [ k ~ ~ ( ~ + ~ J . ~ ~ k + l 1 . . ~ [ k + l 1 . . ~ ~ ~ [ k + l ] . ~ [ k + l ~ ~ ~  (16) 
rlk*,I. 

The prime over the summation symbol indicates that the sum is over all irreps T[k+ll- 
which are obtained by adding one box (in a legitimate position) to the irrep rIk, . 

The transfer of a particle from the second cluster into the third one can be effected 
with obvious minor modifications. 

Once all the relevant particles have been moved into the third cluster the evaluation 
of the matrix element of the intercluster class-operator becomes trivial, since the third 
cluster is expressed as a linear combination of terms, each one of which belongs to 
an irrep of the symmetric group Each such term is an eigenstate of the intercluster 
class-operators. 
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The permutational symmetry adapted non-spurious two-cluster wavefunction, 
which we possess once the appropriate set of class-operators has been diagonalized, 
can be used in several very different physical contexts. It provides a very straightforward 
means for the evaluation of nuclear spectroscopic factors and enables the study of 
interacting clusters of identical particles ranging from quarks through nucleons to 
rare-gas atoms. Among the many applications we find the study of fission and fusion 
of clusters of nuclei or atoms particularly exciting. The latter are crucial steps in the 
process of nucleation and droplet-formation in the gas phase. The coordinate transfor- 
mations discussed in the present article are equally useful in the study systems of 
identical particles within classical mechanics, such as in molecular dynamics simula- 
tions of gas-phase atomic cluster behaviour. 

The generalization of the algorithm to more than two clusters involves some further 
angular momentum recoupling transformations, but is otherwise straightforward. 

Research by JK was supported by the Technion VPR fund and by the fund for the 
promotion of research at the Technion. 
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